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OBJECTIVES: 

1) Develop mathematical foundations for a unified approach to object (in particular 
target) detection and recognition. 

2) Accommodate multi-sensor data and scenarios with large numbers of objects. 

3) Accommodate rigid and non-rigid transformations, variations in lighting conditions, 
contrast, noise, blur, and clutter. 

4) Overcome the massive computational hurdles inherent in the general problem of object 
detection and recognition. 

NOTABLE ACCOMPLISHMENTS. 

1. The starting point when building a mathematical foundation for ATR has been the 
assertion that in order to be able to see and understand scenes it is necessary to have some 
prior knowledge about the scene ensemble that is expected to be encountered. We construct 
such priors using pattern theoretic ideas and try to catch the essential characteristics of the 
scene ensemble through the introduction of a configuration space C.   This leads to prior 
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probability measures II on C. It should be noted, however, that there will be several such 
measures, each one corresponding to the knowledge we happen to have in a particular situa- 
tion, say parametrized through a parameter vector 0 G 6. The coordinates of the parameter 
space 6 can express for example meteorological conditions like temperature, lighting condi- 
tions, such as the position of the Sun, or tactical conditions, such as the type and number of 
vehicles expected in the scene when such knowledge, more or less accurate, has been made 
available through other means. In this way the probability measure will be conditioned into 
some He on C. 

In this approach to ATR an instrumental idea is the role of prior conditions made explicit 
through parameters 6. One could express this by saying that these parameters represent 
a statistical map of the potential scene ensemble. Typically the map will give only an 
incomplete description of the scene, perhaps that it is of type 'desert' without specifying the 
location of individual sand dunes, or that it can contain vehicles of a certain type without 
specifying their location and orientation, nor their number n > 0. 

The potential OOFs (Objects Of Interest) are represented in more detail, say through 
CAD models - templates operated on by low dimensional transformation groups, generically 
denoted by S. The group could be for example the Euclidean group in the plane, S3DSE(2), 
for totally rigid objects, augmented if necessary by a low number of dimensions if rigidity is 
not total, for example that of a rotating turret. Or, for FLIR sensors, the thermal profile 
is represented by a low dimensional multiplicative group depending upon a 6 that expresses 
temperature conditions and recent object activity. 

In dynamic situations, for example searching for aircraft in air space, the probabilities 
on the transformation groups represent what is known about the dynamics of the targets: 
mass, moments of inertia, limitations on thrust and torque, etc., and relate them to the de- 
velopment of trajectories through the equations of Newtonian mechanics. We have explored 
this possibility and constructed priors also allowing several targets in the scene. 

This is all put together by using the compositional aspect of pattern theory, through 
which we combine OOI's with background, and the transformational aspect, through which 
we modify the resulting scenes by applications of transformations from S. 

The prior knowledge has now been represented by a prior probability measure lie which 
is then conditioned by the information acquired by the sensors, a mathematical structure, 
the deformed image Iv, which is typically an array, not necessarily rectangular. A cross 
array of radars, for example, would have an output consisting of complex scalars arranged in 
a cross like configuration. To formalize this we often write Iv — 3Dn(Tsc) where the sensor 
transformation T takes the true (but unknown) configuration sceC into an array Tsc, and 
n(I) means a noise array depending upon the image array /. In simple situations the noise 
can be additive Gaussian, in quantum limited situations it can be Poisson, and so on. 

We have not tried to contribute to the mathematics of sensor technology since this is out- 
side our domain of expertise. Instead we have relied upon the literature to choose T, n(-),.... 



This done we get the posterior probability measure Pe{dc\Iv) on C conditioned by the ob- 
served image(s) through a straight forward application of Bayes' theorem; this posterior 
measure contains all the available information. 

To exploit the information we have built inference engines that synthesize the posterior 
measure. The engine solves the equations of a jump-diffusion process recursively and the 
solution has been used for target recognition and detection but could also be applied to get 
optimal prediction of the future behavior of the target (s). This set up allows for multiple 
sensors as well as for multiple targets, 

2. The methodology described above has been implemented for the following scenarios: 
a) One or several rigid objects - tanks, APC... - observed with FLIR using CAD models 

for the OOI and simulated background. 
b) A flying object observed with a combination of visible light camera with high resolution 

radar, synthesized noise. 
c) A rigid object observed with a visible light camera with stereographic projection. 

3. Within this framework we have derived metrics for ATR, in particular Hilbert-Schmidt 
lower bounds, both for detection/recognition error probabilities and for estimation errors in 
the Euclidean group S = SDSE(2). Since this group has curved geometry the usual linear- 
quadratic metrics are not suitable. We have argued that non-convex cost functions must 
be used and that ambiguities in inferences, that result from the lack of convexity, must be 
explicitly allowed in any realistic evaluation of performance in such cases. 

The analytically derived lower bounds have been compared to numerical results obtained 
by Monte Carlo simulation in scenario c); the results were approximately the same. 

4. The computational feasibility of these inference engines has been explored and saccadic 
search algorithms have been designed to speed them up. This part of our work is still in a 
preliminary form. 

5. We believe that an important component in our approach is still missing: the pattern- 
theoretic representation of clutter. As mentioned above we need a mathematical description 
of the whole scene, and this includes clutter, in order to make optimal inferences. For this 
reason we have begun to study clutter systematically. Earlier it was difficult to get access 
to real data with clutter but that has become possible via some image data bases. We have 
used in particular the MSTAR data base. We have started with two clutter types: 

A) Forest type clutter of clustering trees 
and 
B) Clutter where the dominating features are roads in a landscape. 
In both cases some analytical results have been obtained but it is too early to claim 



success as far as realism is concerned. This work is continuing. 

6. A formal framework has been developed for object modelling and image interpretation 
based upon ideas from the cognitive sciences. Collaboration is ongoing with neurophysiolo- 
gists to test specific predictions about patterns of activity in multi-unit recordings. 

Related to this is the development of a theory of computational anatomy for use in 
medical imaging, in particular using magnetic resonance cameras. This is being done in col- 
laboration with radiologists, psychiatrists and neuroscientists at Washington University and 
Iowa University. Some concrete results were obtained for the early diagnosis of schizophrenia 
based on shape changes in the hippocampus. 

Both of these research activities are in the form of technology transfer. They do not deal 
directly with ATR but are based on mathematical techniques that we have constructed for 
ATR. Also, some of these ideas were employed for the detection of mines in shallow water. 

7. The problem of reconstructing surfaces from SAR data has been studied in the context 
of a particular SAR application, namely the reconstruction of data collected by the Magellan 
probe of Venus. It is believed that this mathematical analysis should be relevant to other 
uses of SAR. 

8. To disseminate our findings to other researchers we have of course used the usual 
method of publishing: technical reports, papers in professional journals, and talks at con- 
ference proceedings. In addition we have authored two CD-ROMS. One entitled "Auto- 
mated Target Recognition; A Bayesian Approach" by A. Srivastava and U. Grenander con- 
tains a fairly non-mathematical presentation of our ATR work. The other, called "Evolv- 
ing Anatomies" by U. Grenander and L. Matejic discusses our approach to Computational 
Anatomy. Both CDs have been distributed widely but copies are still available. We plan to 
author further CDs based on our research in the future. 

Meetings have been organized to present our results. One was a workshop on ATR and 
was held at Brown University in 1996. Another dealt with Computational Anatomy was 
organized at Washington University in 1996. 

CONCLUSIONS. The task of developing a mathematical foundation for a unified ap- 
proach to object recognition has been completed to some extent. We believe that this has led to 
a better understanding of what is really needed in ATR. theory and, partially, to how this can 
be realized. We now have the beginning of an ATR theory and hope that it will be exploited 
by interested members of the ATR community. 
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